当前位置: 首页 >> 中心概况 >> 成员构成 >> 正文
09 2024.07

阅读:

    李勇

    李勇

    海南大学物理与光电工程学院、理论物理研究中心教授,国家优秀青年基金获得者。


    1999年获华中理工大学(现华中科技大学)物理系学士学位,2001年获中科院武汉物理与数学研究所(现中科院精密测量研究院)原子分子物理硕士学位,2004年获中科院理论物理研究所理论物理博士学位。2006年至2010年先后在中科院交叉学科理论研究中心、瑞士巴塞尔大学物理系及香港大学物理系任博士后。2010年加入北京计算科学研究中心,2022年加入海南大学。获中国工程物理研究院科技创新奖二等奖(第三完成人,2016年)。2015年起任中国量子光学学会委员、《量子光学学报》编委。2023年起任海南省物理学会理事。


    在基于原子、分子(系综)和微纳机械体系的量子光学及量子信息基础的理论研究方面,完成了一系列系统性较强的研究工作,如光与原子系综相互作用系统中的量子存贮与量子相变,光力系统中的机械振子冷却、光力纠缠和光学非互易性传输,以及基于量子光学方法的手性分子分离、探测和转化等。在国内外学术刊物上共发表论文160余篇,含Phys. Rev. Lett. 7篇,J. Phys. Chem. Lett. 2篇,Phys. Rev. A/B/Applied/Research等90多篇,总引用近5000次(Web of Science)。


    研究领域

    理论物理,量子光学


    目前感兴趣的研究方向:

    (分子)光力学系统中的信号传输与量子性质;手性分子的手性检测、分离与转化;巨原子系统中的量子光学现象。


    招生信息:

    招收有兴趣从事量子光学理论研究的优秀研究生和博士后。


    联系方式:

    yongli@hainanu.edu.cn


    科研项目:

    “巨型原子系统中的非传统量子光学现象的理论研究”,No. 12274107,国家自然科学基金面上项目,55万,2023.1—2026.12,主持。

    “超快光谱的理论研究”,No. 2023ZD0300704,国家科技部科技创新2030重大项目课题,400万(归属个人名下160万),2024.1—2028.12,主持。


    代表性论文:(详见https://www.webofscience.com/wos/author/record/G-6636-2013)

    [1] Fen Zou, Lei Du, Yong Li, and Hui Dong, Amplifying Frequency Up-Converted Infrared Signals with a Molecular Optomechanical Cavity, Phys. Rev. Lett. 132, 153602 (2024).

    [2] Wu Wang, Fen Zou, Stephan Fritzsche, and Yong Li, Isomeric Population Transfer of the 229Th Nucleus via Hyperfine Electronic Bridge, Phys. Rev. Lett. 133, 223001 (2024).

    [3] Fen Zou, Peng Zhang, and Yong Li, Enantiomer-Specific Pumping of Chiral Molecules, J. Phys. Chem. Lett. 15, 10554 (2024).

    [4] Bo Liu, Yong Li, Chong Ye, and C. P. Sun, Pump-control approach to enantiospecific state transfer, Optics Express 32(16), 28282 (2024).

    [5] Greeshma Gopinath, Yong Li, and Sankar Davuluri, Continuous variable entanglement between propagating optical modes using optomechanics, EPJ Quantum Technology 11, 41 (2024).

    [6] C. Ye, Y. Sun, Y. Li, and X. Zhang, Single-Shot Nondestructive Quantum Sensing for Gaseous Samples with Hundreds of Chiral Molecules, J. Phys. Chem. Lett. 14, 6772 (2023).

    [7] Jian-Jian Cheng, Chong Ye, and Yong Li, Enantio-specific state transfer of chiral molecules through enantio-selective shortcut-to-adiabaticity paths, J. Chem. Phys. 158, 164303 (2023).

    [8] Zhi-Cheng Gong, Cheng-Yu Shen, Tian-Hua Mao, Chang-Pu Sun, Yong Li, and Hao Fu, Optimal squeezed cooling of a mechanical oscillator using measurement-based vector feedback, Science China - Physics, Mechanics & Astronomy 66(7), 274211 (2023).

    [9] L. Du, Y.-T Chen, Y. Zhang, Y. Li, and J.-H. Wu, Decay dynamics of a giant atom in a structured bath with broken, Quantum Sci. Technol. 8, 045010 (2023).

    [10] Mao-Rui Cai, Chong Ye, Hui Dong, and Yong Li, Enantiodetection of Chiral Molecules via Two-Dimensional Spectroscopy, Phys. Rev. Lett. 129, 103201 (2022).

    [11] Lei Du, Yan Zhang, Jin-Hui Wu, Anton Frisk Kockum, and Yong Li, Giant Atoms in a Synthetic Frequency Dimension, Phys. Rev. Lett. 128, 223602 (2022).

    [12] Lei Du, Yao-Tong Chen, Yan Zhang, and Yong Li, Giant atoms with time-dependent couplings, Phys. Rev. Research 4, 023198 (2022).

    [13] Yu-Yuan Chen, Jian-Jian Cheng, Chong Ye, and Yong Li, Enantiodetection of cyclic three-level chiral molecules in a driven cavity, Phys. Rev. Research 4, 013100 (2022).

    [14] Bo Liu, Chong Ye, C. P. Sun, and Yong Li, Enantiospecific state transfer for gaseous symmetric-top chiral molecules, Phys. Rev. A 105, 043110 (2022).

    [15] Lei Du, Yao-Tong Chen, and Yong Li, Nonreciprocal frequency conversion with chiral Lambda-type atoms, Phys. Rev. Research 3, 043226 (2021).

    [16] Sankar Davuluri and Yong Li, Overcoming standard quantum limit using a momentum measuring interferometer, Optics Letters 45, 1256 (2020).

    [17] Lei Du, Yao-Tong Chen, Jin-Hui Wu, and Yong Li, Nonreciprocal interference and coherent photon routing in a three-port optomechanical system, Optics Express 28, 3647 (2020).

    [18] Yu-Yuan Chen, Chong Ye, Quansheng Zhang, Yong Li, Enantio-discrimination via light deflection effect, J. Chem. Phys. 152, 204305 (2020).

    [19] Chong Ye, Quansheng Zhang, Yu-Yuan Chen, and Yong Li, Fast enantioconversion of chiral mixtures based on a four-level double-Δ model, Phys. Rev. Research 2, 033064 (2020).

    [20] Cheng Jiang, L. N. Song, and Yong Li, Directional phase-sensitive amplifier between microwave and optical photons, Phys. Rev. A 99, 023823 (2019).

    [21] Hao Fu, Z.-C. Gong, T.-H. Mao, C.-Y. Shen, C.-P. Sun, S. Yi, Yong Li, and G.-Y. Cao, Geometric Energy Transfer in a Stueckelberg Interference of two Parametrically Coupled Mechanical Modes, Phys. Rev. Applied 11, 034010 (2019).

    [22] Chong Ye, Quansheng Zhang, Yu-Yuan Chen, and Yong Li, Determination of enantiomeric excess with chirality-dependent ac Stark effects in cyclic three-level models, Phys. Rev. A 100, 033411 (2019).

    [23] K. Li, S. Davuluri, and Yong Li, Improving optomechanical gyroscopes by coherent quantum noise cancellation processing, Science China - Physics, Mechanics & Astronomy 61, 090311 (2018).

    [24] Hao Fu, Zhi-cheng Gong, Li-ping Yang, Tian-hua Mao, Chang-pu Sun, Su Yi, Yong Li, and Geng-yu Cao, Coherent Optomechanical Switch for Motion Transduction Based on Dynamically Localized Mechanical Modes, Phys. Rev. Applied 9, 054024 (2018).

    [25] X. Z. Zhang, L. Tian, and Yong Li, Optomechanical transistor with mechanical gain, Phys. Rev. A 97, 043818 (2018).

    [26] C. Jiang, L. N. Song, and Yong Li, Directional amplifier in an optomechanical system with optical gain, Phys. Rev. A 97, 053812 (2018).

    [27] K. Li, H. Fu, and Yong Li, Coriolis-force-induced coupling between two modes of a mechanical resonator for detection of angular velocity, Phys. Rev. A 98, 023862 (2018).

    [28] Chong Ye, Quansheng Zhang, and Yong Li, Real single-loop cyclic three-level configuration of chiral molecules, Phys. Rev. A 98, 063401 (2018).

    [29] Z. H. Wang, Xun-Wei Xu, and Yong Li, Partially dark optical molecule via phase control, Phys. Rev. A 95, 013815 (2017).

    [30] Yong Li, Y. Y. Huang, X. Z. Zhang, and Lin Tian, Optical directional amplification in a three-mode optomechanical system, Opt. Express 25(16), 18907 (2017).

    [31] Sankar Davuluri, Kai Li, and Yong Li, Gyroscope with two-dimensional optomechanical mirror, New J. Phys. 19, 113004 (2017).

    [32] S. Davuluri and Yong Li, Absolute rotation detection by Coriolis force measurement using optomechanics, New J. Phys. 18, 103047 (2016).

    [33] Xun-Wei Xu, Yong Li, Ai-Xi Chen, and Yu-xi Liu, Nonreciprocal conversion between microwave and optical photons in electro-optomechanical systems, Phys. Rev. A 93, 023827 (2016).

    [34] Hao Fu, Zhi-cheng Gong, Tian-hua Mao, Chang-pu Sun, Su Yi, Yong Li, and Geng-yu Cao, Classical analog of Stückelberg interferometry in a two-coupled-cantilever–based optomechanical system, Phys. Rev. A 94, 043855 (2016).

    [35] Z. H. Wang, C. P. Sun, and Yong Li, Microwave degenerate parametric down-conversion with a single cyclic three-level system in a circuit-QED setup, Phys. Rev. A 91, 043801 (2015).

    [36] Xun-Wei Xu and Yong Li, Optical nonreciprocity and optomechanical circulator in three-mode optomechanical systems, Phys. Rev. A 91, 053854 (2015).

    [37] Xun-Wei Xu, Yu-xi Liu, Chang-Pu Sun, and Yong Li, Mechanical PT symmetry in coupled optomechanical systems, Phys. Rev. A 92, 013852 (2015).

    [38] Yujie Guo, Kai Li, Wenjie Nie, and Yong Li, Electromagnetically-induced-transparency-like ground-state cooling in a double-cavity optomechanical system, Phys. Rev. A 90, 053841 (2014).

    [39] Xun-Wei Xu and Yong Li, Tunable photon statistics in weakly nonlinear photonic molecules, Phys. Rev. A 90, 043822 (2014).

    [40] Lan Zhou, Li-Ping Yang, Yong Li, and C. P. Sun, Quantum Routing of Single Photons with a Cyclic Three-Level System, Phys. Rev. Lett. 111, 103604 (2013).

    [41] Jian-Qi Zhang, Yong Li, and Mang Feng, Cooling a charged mechanical resonator with time-dependent bias gate voltages, J. Phys.: Condens. Matter 25, 142201 (Fast Track Communication) (2013).

    [42] Yong Li, Joerg Evers, Hang Zheng, and Shi-Yao Zhu, Collective spontaneous emission beyond the rotating-wave approximation, Phys. Rev. A 85, 053830 (2012).

    [43] Yong Li, Lian-Ao Wu, and Z. D. Wang, Fast cooling of mechanical resonator with time-controllable optical cavities, Phys. Rev. A 83, 043804 (2011).

    [44] Yong Li, Y. D. Wang, Fei Xue, and C. Bruder, Quantum theory of transmission line resonator-assisted cooling of micromechanical resonator, Phys. Rev. B 78, 134301 (2008).

    [45] Yong Li and C. Bruder, Dynamic method to distinguish between left- and right-handed chiral molecules, Phys. Rev. A 77, 015403 (2008).

    [46] Yong Li, C. Bruder, and C. P. Sun, Generalized Stern-Gerlach effect for chiral molecules, Phys. Rev. Lett. 99, 130403 (2007).

    [47] Yong Li, Z. D. Wang, and C. P. Sun, Quantum criticality in a generalized Dicke model, Phys. Rev. A 74, 023815 (2006).

    [48] Y. Li, P. Zhang, P. Zanardi, and C. P. Sun, Non-Abelian geometric quantum memory with atomic ensemble, Phys. Rev. A 70, 032330 (2004).

    [49] Y. Li, C. P. Sun, The group velocity of a probe light in an ensemble of \Lambda-atoms under two-photon resonance, Phys. Rev. A 69, 051802(R) (2004).

    [50] C. P. Sun, Y. Li, and X. F. Liu, Quasi-spin wave quantum memories with dynamic symmetry, Phys. Rev. Lett. 91, 147903 (2003).

    海南大学理论物理研究中心
  1. 地址:海南大学理论物理研究中心
  2. 电话:0898-66279161
  3. E-mail:lr@hainanu.edu.cn
  4. 美工支持/中旗网络
  5. 友情链接

    -物理与光电工程学院
    海南大学